Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
Epilepsy Res ; 200: 107317, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38341935

RESUMO

Lafora disease is a rare and fatal form of progressive myoclonic epilepsy with onset during early adolescence. The disease is caused by mutations in EPM2A, encoding laforin, or EPM2B, encoding malin. Both proteins have functions that affect glycogen metabolism, including glycogen dephosphorylation by laforin and ubiquitination of enzymes involved in glycogen metabolism by malin. Lack of function of laforin or malin results in the accumulation of polyglucosan that forms Lafora bodies in the central nervous system and other tissues. Enzyme replacement therapy through intravenous administration of alglucosidase alfa (Myozyme®) has shown beneficial effects removing polyglucosan aggregates in Pompe disease. We evaluated the effectiveness of intracerebroventricular administration of alglucosidase alfa in the Epm2a-/- knock-out and Epm2aR240X knock-in mouse models of Lafora disease. Seven days after a single intracerebroventricular injection of alglucosidase alfa in 12-month-old Epm2a-/- and Epm2aR240X mice, the number of Lafora bodies was not reduced. Additionally, a prolonged infusion of alglucosidase alfa for 2 or 4 weeks in 6- and 9-month-old Epm2a-/- mice did not result in a reduction in the number of LBs or the amount of glycogen in the brain. These findings hold particular significance in guiding a rational approach to the utilization of novel therapies in Lafora disease.


Assuntos
Doença de Lafora , alfa-Glucosidases , Camundongos , Animais , Doença de Lafora/tratamento farmacológico , Doença de Lafora/genética , Camundongos Knockout , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Glicogênio/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética
2.
Genes (Basel) ; 15(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275603

RESUMO

Lafora disease (LD) is a genetic disease affecting beagles, resulting in seizures in combination with other signs. The aim of this study was to describe the clinical signs of LD in beagles with different NHLRC1 genotypes. One hundred and sixty-six beagles were tested for an NHLRC1 gene defect: L/L (n = 67), N/L (n = 32), N/N (n = 67). Owners were asked to participate in a survey about the clinical signs of LD in their dogs. These were recorded for the three possible genotypes in the two age groups, <6 years and ≥6 years. In all genotypes, nearly all the signs of LD were described. In the age group ≥ 6 years, however, they were significantly more frequent in beagles with the L/L genotype. If the following three clinical signs occur together in a beagle ≥ 6 years-jerking of the head, photosensitivity and forgetting things he/she used to be able to do-98.2% of these dogs are correctly assigned to the L/L genotype. If one or two of these signs are missing, the correct classification decreases to 92.1% and 13.2%, respectively. Only the combination of certain signs truly indicates the L/L genotype. Yet, for many dogs, only genetic testing will provide confirmation of the disease.


Assuntos
Proteínas de Transporte , Doença de Lafora , Feminino , Animais , Cães , Proteínas de Transporte/genética , Ubiquitina-Proteína Ligases/genética , Genótipo , Doença de Lafora/genética , Doença de Lafora/veterinária , Doença de Lafora/diagnóstico , Testes Genéticos
3.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38287677

RESUMO

Lafora disease (LD) is a life-threatening autosomal recessive and progressive neurodegenerative disorder that primarily affects adolescents, resulting in mortality within a decade of onset. The symptoms of LD include epileptic seizures, ataxia, dementia, and psychosis. The underlying pathology involves the presence of abnormal glycogen inclusions in neurons and other tissues, which may contribute to neurodegeneration. LD is caused by loss-of-function mutations in either the EPM2A gene or the NHLRC1 gene. These two genes, respectively, code for laforin phosphatase and malin ubiquitin ligase, and are thought to function, as a functional complex, in diverse cellular pathways. One of the major pathways affected in LD is glycogen metabolism; defects here lead to abnormally higher levels of glycogen and its hyperphosphorylation and aggregation, resulting in the formation of Lafora inclusion bodies. Currently, there is no effective therapy for LD. Studies, particularly from animal models, provide distinct insights into the fundamental mechanisms of diseases and potential avenues for therapeutic interventions. The purpose of this review is to present a comprehensive overview of our current knowledge regarding the disease, its genetics, the animal models that have been developed, and the therapeutic strategies that are being developed based on an understanding of the disease mechanism.


Assuntos
Doença de Lafora , Animais , Doença de Lafora/diagnóstico , Doença de Lafora/genética , Doença de Lafora/terapia , Proteínas Tirosina Fosfatases não Receptoras/genética , Neurônios/metabolismo , Mutação , Glicogênio/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Neurotherapeutics ; 20(6): 1808-1819, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37700152

RESUMO

Patients with Lafora disease have a mutation in EPM2A or EPM2B, resulting in dysregulation of glycogen metabolism throughout the body and aberrant glycogen molecules that aggregate into Lafora bodies. Lafora bodies are particularly damaging in the brain, where the aggregation drives seizures with increasing severity and frequency, coupled with neurodegeneration. Previous work employed mouse genetic models to reduce glycogen synthesis by approximately 50%, and this strategy significantly reduced Lafora body formation and disease phenotypes. Therefore, an antisense oligonucleotide (ASO) was developed to reduce glycogen synthesis in the brain by targeting glycogen synthase 1 (Gys1). To test the distribution and efficacy of this drug, the Gys1-ASO was administered to Epm2b-/- mice via intracerebroventricular administration at 4, 7, and 10 months. The mice were then sacrificed at 13 months and their brains analyzed for Gys1 expression, glycogen aggregation, and neuronal excitability. The mice treated with Gys1-ASO exhibited decreased Gys1 protein levels, decreased glycogen aggregation, and reduced epileptiform discharges compared to untreated Epm2b-/- mice. This work provides proof of concept that a Gys1-ASO halts disease progression of EPM2B mutations of Lafora disease.


Assuntos
Doença de Lafora , Humanos , Camundongos , Animais , Doença de Lafora/genética , Doença de Lafora/metabolismo , Glicogênio Sintase/genética , Modelos Animais de Doenças , Mutação , Oligonucleotídeos Antissenso/uso terapêutico , Glicogênio/metabolismo , Ubiquitina-Proteína Ligases/genética
6.
Orphanet J Rare Dis ; 18(1): 263, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658439

RESUMO

BACKGROUND: Lafora disease (LD) is a fatal form of progressive myoclonic epilepsy caused by biallelic pathogenic variants in EPM2A or NHLRC1. With a few exceptions, the influence of genetic factors on disease progression has yet to be confirmed. We present a systematic review and meta-analysis of the known pathogenic variants to identify genotype-phenotype correlations. METHODS: We collected all reported cases with genetically-confirmed LD containing data on disease history. Pathogenic variants were classified into missense (MS) and protein-truncating (PT). Three genotype classes were defined according to the combination of the variants: MS/MS, MS/PT, and PT/PT. Time-to-event analysis was performed to evaluate survival and loss of autonomy. RESULTS: 250 cases described in 70 articles were included. The mutated gene was NHLRC1 in 56% and EPM2A in 44% of cases. 114 pathogenic variants (67 EPM2A; 47 NHLRC1) were identified. The NHLRC1 genotype PT/PT was associated with shorter survival [HR 2.88; 95% CI 1.23-6.78] and a trend of higher probability of loss of autonomy [HR 2.03, 95% CI 0.75-5.56] at the multivariable Cox regression analysis. The population carrying the homozygous p.Asp146Asn variant of NHLRC1 genotype was confirmed to have a more favourable prognosis in terms of disease duration. CONCLUSIONS: This study demonstrates the existence of prognostic genetic factors in LD, namely the genotype defined according to the functional impact of the pathogenic variants. Although the reasons why NHLRC1 genotype PT/PT is associated with a poorer prognosis have yet to be fully elucidated, it may be speculated that malin plays a pivotal role in LD pathogenesis.


Assuntos
Doença de Lafora , Epilepsias Mioclônicas Progressivas , Humanos , Doença de Lafora/genética , Prognóstico , Espectrometria de Massas em Tandem , Progressão da Doença , Ubiquitina-Proteína Ligases/genética
7.
Genes (Basel) ; 14(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37107612

RESUMO

Lafora disease (LD) is a progressive neurologic disorder caused by biallelic pathogenic variants in EPM2A or EPM2B, leading to tissue accumulation of polyglucosan aggregates termed Lafora bodies (LBs). This study aimed to characterize the retinal phenotype in Epm2a-/- mice by examining knockout (KO; Epm2a-/-) and control (WT) littermates at two time points (10 and 14 months, respectively). In vivo exams included electroretinogram (ERG) testing, optical coherence tomography (OCT) and retinal photography. Ex vivo retinal testing included Periodic acid Schiff Diastase (PASD) staining, followed by imaging to assess and quantify LB deposition. There was no significant difference in any dark-adapted or light-adapted ERG parameters between KO and WT mice. The total retinal thickness was comparable between the groups and the retinal appearance was normal in both groups. On PASD staining, LBs were observed in KO mice within the inner and outer plexiform layers and in the inner nuclear layer. The average number of LBs within the inner plexiform layer in KO mice were 1743 ± 533 and 2615 ± 915 per mm2, at 10 and 14 months, respectively. This is the first study to characterize the retinal phenotype in an Epm2a-/- mouse model, demonstrating significant LB deposition in the bipolar cell nuclear layer and its synapses. This finding may be used to monitor the efficacy of experimental treatments in mouse models.


Assuntos
Doença de Lafora , Epilepsias Mioclônicas Progressivas , Camundongos , Animais , Doença de Lafora/genética , Doença de Lafora/patologia , Modelos Animais de Doenças , Retina/patologia , Epilepsias Mioclônicas Progressivas/patologia , Eletrorretinografia
8.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046993

RESUMO

Lafora disease (LD) is a neurological disorder characterized by progressive myoclonus epilepsy. The hallmark of the disease is the presence of insoluble forms of glycogen (polyglucosan bodies, or PGBs) in the brain. The accumulation of PGBs is causative of the pathophysiological features of LD. However, despite the efforts made by different groups, the question of why PGBs accumulate in the brain is still unanswered. We have recently demonstrated that, in vivo, astrocytes accumulate most of the PGBs present in the brain, and this could lead to astrocyte dysfunction. To develop a deeper understanding of the defects present in LD astrocytes that lead to LD pathophysiology, we obtained pure primary cultures of astrocytes from LD mice from the postnatal stage under conditions that accumulate PGBs, the hallmark of LD. These cells serve as novel in vitro models for studying PGBs accumulation and related LD dysfunctions. In this sense, the metabolomics of LD astrocytes indicate that they accumulate metabolic intermediates of the upper part of the glycolytic pathway, probably as a consequence of enhanced glucose uptake. In addition, we also demonstrate the feasibility of using the model in the identification of different compounds that may reduce the accumulation of polyglucosan inclusions.


Assuntos
Doença de Lafora , Camundongos , Animais , Doença de Lafora/metabolismo , Astrócitos/metabolismo , Modelos Animais de Doenças , Glucanos/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
9.
Neurobiol Dis ; 181: 106119, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37059210

RESUMO

Lafora disease is a rare recessive form of progressive myoclonic epilepsy, usually diagnosed during adolescence. Patients present with myoclonus, neurological deterioration, and generalized tonic-clonic, myoclonic, or absence seizures. Symptoms worsen until death, usually within the first ten years of clinical onset. The primary histopathological hallmark is the formation of aberrant polyglucosan aggregates called Lafora bodies in the brain and other tissues. Lafora disease is caused by mutations in either the EPM2A gene, encoding laforin, or the EPM2B gene, coding for malin. The most frequent EPM2A mutation is R241X, which is also the most prevalent in Spain. The Epm2a-/- and Epm2b-/- mouse models of Lafora disease show neuropathological and behavioral abnormalities similar to those seen in patients, although with a milder phenotype. To obtain a more accurate animal model, we generated the Epm2aR240X knock-in mouse line with the R240X mutation in the Epm2a gene, using genetic engineering based on CRISPR-Cas9 technology. Epm2aR240X mice exhibit most of the alterations reported in patients, including the presence of LBs, neurodegeneration, neuroinflammation, interictal spikes, neuronal hyperexcitability, and cognitive decline, despite the absence of motor impairments. The Epm2aR240X knock-in mouse displays some symptoms that are more severe that those observed in the Epm2a-/- knock-out, including earlier and more pronounced memory loss, increased levels of neuroinflammation, more interictal spikes and increased neuronal hyperexcitability, symptoms that more precisely resemble those observed in patients. This new mouse model can therefore be specifically used to evaluate how new therapies affects these features with greater precision.


Assuntos
Disfunção Cognitiva , Doença de Lafora , Animais , Camundongos , Disfunção Cognitiva/genética , Doença de Lafora/genética , Doença de Lafora/patologia , Camundongos Knockout , Doenças Neuroinflamatórias , Proteínas Tirosina Fosfatases não Receptoras/genética , Ubiquitina-Proteína Ligases/genética
10.
Cells ; 12(5)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36899857

RESUMO

Lafora disease is a rare disorder caused by loss of function mutations in either the EPM2A or NHLRC1 gene. The initial symptoms of this condition are most commonly epileptic seizures, but the disease progresses rapidly with dementia, neuropsychiatric symptoms, and cognitive deterioration and has a fatal outcome within 5-10 years after onset. The hallmark of the disease is the accumulation of poorly branched glycogen in the form of aggregates known as Lafora bodies in the brain and other tissues. Several reports have demonstrated that the accumulation of this abnormal glycogen underlies all the pathologic traits of the disease. For decades, Lafora bodies were thought to accumulate exclusively in neurons. However, it was recently identified that most of these glycogen aggregates are present in astrocytes. Importantly, astrocytic Lafora bodies have been shown to contribute to pathology in Lafora disease. These results identify a primary role of astrocytes in the pathophysiology of Lafora disease and have important implications for other conditions in which glycogen abnormally accumulates in astrocytes, such as Adult Polyglucosan Body disease and the buildup of Corpora amylacea in aged brains.


Assuntos
Doença de Depósito de Glicogênio , Doença de Lafora , Adulto , Humanos , Idoso , Doença de Lafora/genética , Doença de Lafora/patologia , Astrócitos/patologia , Glicogênio , Neurônios/patologia , Doença de Depósito de Glicogênio/patologia , Ubiquitina-Proteína Ligases
11.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674605

RESUMO

Lafora disease is a rare, fatal form of progressive myoclonus epilepsy characterized by continuous neurodegeneration with epileptic seizures, characterized by the intracellular accumulation of aberrant polyglucosan granules called Lafora bodies. Several works have provided numerous evidence of molecular and cellular alterations in neural tissue from experimental mouse models deficient in either laforin or malin, two proteins related to the disease. Oxidative stress, alterations in proteostasis, and deregulation of inflammatory signals are some of the molecular alterations underlying this condition in both KO animal models. Lafora bodies appear early in the animal's life, but many of the aforementioned molecular aberrant processes and the consequent neurological symptoms ensue only as animals age. Here, using small RNA-seq and quantitative PCR on brain extracts from laforin and malin KO male mice of different ages, we show that two different microRNA species, miR-155 and miR-146a, are overexpressed in an age-dependent manner. We also observed altered expression of putative target genes for each of the microRNAs studied in brain extracts. These results open the path for a detailed dissection of the molecular consequences of laforin and malin deficiency in brain tissue, as well as the potential role of miR-155 and miR-146a as specific biomarkers of disease progression in LD.


Assuntos
Doença de Lafora , MicroRNAs , Camundongos , Masculino , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Doença de Lafora/genética , Doença de Lafora/metabolismo , Doenças Neuroinflamatórias , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Estresse Oxidativo/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Neurobiol Dis ; 177: 105998, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36638890

RESUMO

Laforin and Malin are two proteins that are encoded by the genes EPM2A and EPM2B, respectively. Laforin is a glucan phosphatase and Malin is an E3-ubiquitin ligase, and these two proteins function as a complex. Mutations occurring at the level of one of the two genes lead to the accumulation of an aberrant form of glycogen meant to cluster in polyglucosans that go under the name of Lafora bodies. Individuals affected by the appearance of these polyglucosans, especially at the cerebral level, experience progressive neurodegeneration and several episodes of epilepsy leading to the manifestation of a fatal form of a rare disease called Lafora disease (LD), for which, to date, no treatment is available. Despite the different dysfunctions described for this disease, many molecular aspects still demand elucidation. An effective way to unknot some of the nodes that prevent the achievement of better knowledge of LD is to focus on the substrates that are ubiquitinated by the E3-ubiquitin ligase Malin. Some substrates have already been provided by previous studies based on protein-protein interaction techniques and have been associated with some alterations that mark the disease. In this work, we have used an unbiased alternative approach based on the activity of Malin as an E3-ubiquitin ligase. We report the discovery of novel bonafide substrates of Malin and have characterized one of them more deeply, namely PIP3-dependent Rac exchanger 1 (P-Rex1). The analysis conducted upon this substrate sets the genesis of the delineation of a molecular pathway that leads to altered glucose uptake, which could be one of the origin of the accumulation of the polyglucosans present in the disease.


Assuntos
Doença de Lafora , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Doença de Lafora/genética , Doença de Lafora/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Glicogênio , Ubiquitinas
13.
Neurotherapeutics ; 20(1): 230-244, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36303102

RESUMO

Lafora disease is a fatal form of progressive myoclonic epilepsy caused by mutations in the EPM2A or NHLRC1/EPM2B genes that usually appears during adolescence. The Epm2a-/- and Epm2b-/- knock-out mouse models of the disease develop behavioral and neurological alterations similar to those observed in patients. The aim of this work is to analyze whether early treatment with metformin (from conception to adulthood) ameliorates the formation of Lafora bodies and improves the behavioral and neurological outcomes observed with late treatment (during 2 months at 10 months of age). We also evaluated the benefits of metformin in patients with Lafora disease. To assess neurological improvements due to metformin administration in the two mouse models, we evaluated the effects on pentylenetetrazol sensitivity, posturing, motor coordination and activity, and memory. We also analyzed the effects on Lafora bodies, neurodegeneration, and astrogliosis. Furthermore, we conducted a follow-up study of an initial cohort of 18 patients with Lafora disease, 8 treated with metformin and 10 untreated. Our results indicate that early metformin was more effective than late metformin in Lafora disease mouse models improving neurological alterations of both models such as neuronal hyperexcitability, motor and memory alterations, neurodegeneration, and astrogliosis and decreasing the formation of Lafora bodies. Moreover, patients receiving metformin had a slower progression of the disease. Overall, early treatment improves the outcome seen with late metformin treatment in the two knock-out mouse models of Lafora disease. Metformin-treated patients exhibited an ameliorated course of the disease with slower deterioration of their daily living activities.


Assuntos
Doença de Lafora , Metformina , Animais , Camundongos , Doença de Lafora/tratamento farmacológico , Doença de Lafora/genética , Metformina/uso terapêutico , Gliose , Seguimentos , Ubiquitina-Proteína Ligases/genética
14.
Neurobiol Dis ; 176: 105964, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526090

RESUMO

Lafora disease (LD; OMIM#254780) is a rare form of progressive myoclonus epilepsy (prevalence <1:1,000,000) characterized by the accumulation of insoluble deposits of aberrant glycogen (polyglucosans), named Lafora bodies, in the brain but also in peripheral tissues. LD is the most severe form of the group of progressive myoclonus epilepsies, since patients present a rapid deterioration and dementia with amplification of seizures, leading to death after a decade from the onset of the first symptoms. We have recently described that reactive glia-derived neuroinflammation should be considered a novel hallmark of LD since we observed a florid upregulation of differentially expressed genes in both LD mouse lines, which were mainly related to mediators of inflammatory response. In this work, we define an upregulation of the expression of mediators of the TNF and IL6/JAK2 signaling pathways in LD. In addition, we describe the activation of the non-canonical form of the inflammasome. Furthermore, we describe the infiltration of peripheral immune cells in the brain parenchyma, which could aggravate glia-derived neuroinflammation. Finally, we describe CXCL10 and S100b as blood biomarkers of the disease, which will allow the study of the progression of the disease using serum blood samples. We consider that the identification of these initial inflammatory changes in LD will be very important to implement possible anti-inflammatory therapeutic strategies to prevent the development of the disease.


Assuntos
Doença de Lafora , Epilepsias Mioclônicas Progressivas , Animais , Camundongos , Interleucina-6 , Doença de Lafora/genética , Neuroglia/metabolismo , Doenças Neuroinflamatórias , Proteínas Tirosina Fosfatases não Receptoras/genética , Transdução de Sinais , Fatores de Necrose Tumoral/metabolismo
15.
Dis Model Mech ; 16(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511140

RESUMO

Glycogen is the largest cytosolic macromolecule and is kept in solution through a regular system of short branches allowing hydration. This structure was thought to solely require balanced glycogen synthase and branching enzyme activities. Deposition of overlong branched glycogen in the fatal epilepsy Lafora disease (LD) indicated involvement of the LD gene products laforin and the E3 ubiquitin ligase malin in regulating glycogen structure. Laforin binds glycogen, and LD-causing mutations disrupt this binding, laforin-malin interactions and malin's ligase activity, all indicating a critical role for malin. Neither malin's endogenous function nor location had previously been studied due to lack of suitable antibodies. Here, we generated a mouse in which the native malin gene is tagged with the FLAG sequence. We show that the tagged gene expresses physiologically, malin localizes to glycogen, laforin and malin indeed interact, at glycogen, and malin's presence at glycogen depends on laforin. These results, and mice, open the way to understanding unknown mechanisms of glycogen synthesis critical to LD and potentially other much more common diseases due to incompletely understood defects in glycogen metabolism.


Assuntos
Glicogênio , Doença de Lafora , Proteínas Tirosina Fosfatases não Receptoras , Ubiquitina-Proteína Ligases , Animais , Camundongos , Glicogênio/metabolismo , Doença de Lafora/genética , Doença de Lafora/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
16.
Arkh Patol ; 84(6): 61-66, 2022.
Artigo em Russo | MEDLINE | ID: mdl-36469720

RESUMO

Lafora disease is a rare hereditary genetic pathology of the nervous system (a group of progressive myoclonic epilepsies). The distinctive morphological feature of this disease is the presence of specific abnormal structures - polyglucosane bodies («Lafora bodies¼) in the brain tissue, myocardium, liver, and epithelium of the sweat gland ducts. The article discusses the clinical data of the course of Lafora's disease in an 18-year-old patient with a fatal outcome and the results of a post-mortem examination. The diagnosis of Lafora disease was confirmed by genetic analysis data - the presence of a homozygous mutation in the 2nd exon of the EPM2A gene - laforin (chr6:146007412G>A, rs137852915). When analyzing literature, we did not find a description of Lafora's disease cases with a fatal outcome with the presentation of macroscopic examination data at autopsy, as well as the results of a pathohistological examination of altered organ tissues with the morphological manifestations specific for this pathology (Lafora bodies in the the brain, heart, sweat gland epithelium).


Assuntos
Doença de Lafora , Humanos , Adolescente , Doença de Lafora/diagnóstico , Doença de Lafora/genética , Doença de Lafora/patologia , Evolução Fatal , Proteínas Tirosina Fosfatases não Receptoras/genética , Corpos de Inclusão/genética , Corpos de Inclusão/patologia , Mutação
17.
J Coll Physicians Surg Pak ; 32(8): S133-S135, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36210672

RESUMO

Lafora body disease (LBD) is a progressive myoclonic genetic epilepsy syndrome characterized by the presence of Lafora inclusion bodies within neurons and other cells. It is a complex neurodegenerative disease presenting in adolescence with seizures, myoclonus, and rapid cognitive decline. Diagnosis is often challenging requiring a thorough history including family history, identification of Lafora bodies in apocrine sweat glands of axillary skin, and specific DNA sequencing. There is no cure and management is mainly supportive. We present one of the only few cases from Pakistan of LBD based on characteristic biopsy findings, history of similar ailment in siblings, and EPM2B mutation. This case emphasizes the need for physicians and neurologists to be aware of diagnostic challenges associated with LBD and its characteristic findings. Key Words: Lafora body, Progressive epilepsy, Myoclonus, Axillary skin biopsy, EPM2B.


Assuntos
Doença de Lafora , Epilepsias Mioclônicas Progressivas , Doenças Neurodegenerativas , Adolescente , Humanos , Corpos de Inclusão/patologia , Doença de Lafora/diagnóstico , Doença de Lafora/genética , Doença de Lafora/patologia , Epilepsias Mioclônicas Progressivas/patologia , Doenças Neurodegenerativas/patologia
18.
J Med Case Rep ; 16(1): 360, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192771

RESUMO

BACKGROUND: Lafora disease is a rare genetic disorder involving glycogen metabolism disorder. It is inherited by autosomal recessive pattern presenting as a progressive myoclonus epilepsy and neurologic deterioration beginning in adolescence. It is characterized by Lafora bodies in tissues such as brain, skin, muscle, and liver. CASE PRESENTATION: We report a rare case of Lafora disease in a 16-year-old Albanian girl who presented at a tertiary health care center with generalized tonic-clonic seizures, eyelid twitches, hallucinations, headache, and cognitive dysfunction. She was initially treated for generalized epilepsy and received an antiepileptic drug. However, owing to resistance of seizures to this antiepileptic drug, a second drug was introduced. However, seizures continued despite compliance with therapy, and general neurological status began to deteriorate. The child began to have hallucinations and decline of cognitive function. She developed dysarthria and unsteady gait. When admitted to the hospital, blood tests and imaging examinations were planned. The blood tests were unremarkable. There was no relevant family history and no consanguinity. Electroencephalography showed multifocal discharges in both hemispheres, and brain magnetic resonance imaging revealed no abnormality. Axillary skin biopsy revealed inclusion bodies in apocrine glands. Consequently, the child was referred to an advanced center for genetic testing, which also confirmed diagnosis of Lafora disease with a positive mutation on NHLRC1 gene. CONCLUSIONS:  Even though rare as a condition, Lafora disease should be considered on differential diagnosis in progressive and drug-refractory epilepsy in adolescents, especially when followed by cognitive decline.


Assuntos
Doença de Lafora , Adolescente , Anticonvulsivantes/uso terapêutico , Criança , Feminino , Glicogênio , Alucinações , Humanos , Doença de Lafora/diagnóstico , Doença de Lafora/tratamento farmacológico , Doença de Lafora/genética , Convulsões/etiologia , Ubiquitina-Proteína Ligases
19.
Rev Neurol ; 75(6): 159-163, 2022 09 16.
Artigo em Espanhol | MEDLINE | ID: mdl-36098450

RESUMO

INTRODUCTION: Mioclonic progressive epilepsy (MPE) includes a clinical and genetical heterogeneous group of neuro-degenerative disorders that associate spontaneous and action-induced myoclonus as well as progressive cognitive impairment. Lafora`s disease is a subtype of MPE with autosomical recessive inheritance due to a mutation in EPM2A or EPM2B genes. Seizures, especially myoclonus, are often refractary to antiepileptic drugs (AD). CASE REPORT: In this article we report a patient with Lafora´s disease diagnosis, previously resistant to several AD tested with good and sustained response to zonisamide. Indeed, we describe a brief review about the efficacy of zonisamida in MPE. CONCLUSION: Zonisamide may be considered as a good therapeutic alternative in MPE.


TITLE: Eficacia de la zonisamida en un caso de enfermedad de Lafora y breve revisión en la epilepsia mioclónica progresiva.Introducción. La epilepsia mioclónica progresiva constituye un grupo complejo de enfermedades neurodegenerativas clínica y genéticamente heterogéneas que asocian mioclonías espontáneas o inducidas por la acción y el deterioro neurológico progresivo. Dentro de estas entidades se encuentra la enfermedad de Lafora, una patología autosómica recesiva causada por mutación en el gen responsable de la síntesis de una proteína llamada laforina (EPM2A) o el gen responsable de la síntesis de la proteína malina (EPM2B o NHLRC1). Son entidades cuyas crisis, en especial las mioclonías, son frecuentemente resistentes a los fármacos anticrisis epilépticas. Caso clínico. Presentamos el caso de una paciente con diagnóstico de enfermedad de Lafora que, tras varios regímenes terapéuticos ineficaces, presentó buena respuesta a la introducción de la zonisamida, con una respuesta favorable mantenida en el tiempo. Asimismo, hacemos una breve revisión de la eficacia de la zonisamida en cuadros de epilepsia mioclónica progresiva. Conclusión. La zonisamida puede ser una buena alternativa en el tratamiento de cuadros con epilepsia mioclónica progresiva.


Assuntos
Doença de Lafora , Epilepsias Mioclônicas Progressivas , Mioclonia , Anticonvulsivantes/uso terapêutico , Humanos , Doença de Lafora/diagnóstico , Doença de Lafora/tratamento farmacológico , Doença de Lafora/genética , Epilepsias Mioclônicas Progressivas/tratamento farmacológico , Epilepsias Mioclônicas Progressivas/genética , Zonisamida/uso terapêutico
20.
Rev. neurol. (Ed. impr.) ; 75(6): 159-163, Sep 16, 2022. ilus
Artigo em Espanhol | IBECS | ID: ibc-209606

RESUMO

Introducción: La epilepsia mioclónica progresiva constituye un grupo complejo de enfermedades neurodegenerativas clínica y genéticamente heterogéneas que asocian mioclonías espontáneas o inducidas por la acción y el deterioro neurológico progresivo. Dentro de estas entidades se encuentra la enfermedad de Lafora, una patología autosómica recesiva causada por mutación en el gen responsable de la síntesis de una proteína llamada laforina (EPM2A) o el gen responsable de la síntesis de la proteína malina (EPM2B o NHLRC1). Son entidades cuyas crisis, en especial las mioclonías, son frecuentemente resistentes a los fármacos anticrisis epilépticas. Caso clínico: Presentamos el caso de una paciente con diagnóstico de enfermedad de Lafora que, tras varios regímenes terapéuticos ineficaces, presentó buena respuesta a la introducción de la zonisamida, con una respuesta favorable mantenida en el tiempo. Asimismo, hacemos una breve revisión de la eficacia de la zonisamida en cuadros de epilepsia mioclónica progresiva. Conclusión: La zonisamida puede ser una buena alternativa en el tratamiento de cuadros con epilepsia mioclónica progresiva.(AU)


INTRODUCTION: Mioclonic progressive epilepsy (MPE) includes a clinical and genetical heterogeneous group of neuro­degenerative disorders that associate spontaneous and action-induced myoclonus as well as progressive cognitive impairment. Lafora`s disease is a subtype of MPE with autosomical recessive inheritance due to a mutation in EPM2A or EPM2B genes. Seizures, especially myoclonus, are often refractary to antiepileptic drugs (AD). CASE REPORT: In this article we report a patient with Lafora´s disease diagnosis, previously resistant to several AD tested with good and sustained response to zonisamide. Indeed, we describe a brief review about the efficacy of zonisamida in MPE. CONCLUSION. Zonisamide may be considered as a good therapeutic alternative in MPE.(AU)


Assuntos
Humanos , Adolescente , Doença de Lafora , Zonisamida , Epilepsias Mioclônicas , Epilepsia , Pacientes Internados , Exame Físico , Avaliação de Sintomas , Resultado do Tratamento , Neurologia , Doenças Neurodegenerativas , Síndromes Epilépticas , Sistema Nervoso Central/anormalidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...